Anaglyphs |
What is an anaglyph?
Anaglyphic stereograms (anaglyphs) are stereo pairs of images in which each
image is shown using a different color. The two images are overlapped and then
viewed using red/green or red/blue or red/cyan glasses (depending on the colors used). This
means that the color channel is used for the stereo separation and therefore
the perception of anaglyphs is monochrome (black and white), although color
anaglyphs can be made.
The word anaglyph comes from the Greek anagluphos, meaning “wrought in low relief”; this comes from the word anagluphein, which means “to carve in relief” (ana = up + gluphein = to carve).
Who invented the anaglyph?
The discovery of anaglyphic 3D came in the 1850s as the result of experiments
by the Frenchmen Joseph D’Almeida and Louis Du Hauron. In 1858 D’Almeida
projected 3D magic lantern slide shows in which color separation took place
using red and blue filters, and the audience wore red and blue goggles. Louis
Du Hauron created the first printed anaglyphs using early color printing and
photography techniques.
William Friese-Green created the first 3D anaglyphic motion pictures in 1889, using a camera with two lenses, which were first shown to the public in 1893. Anaglyphic films called “plasticons” or “plastigrams” enjoyed great popularity in the 1920s. These used a single film with the green image emulsion on one side of the film and the red image emulsion on the other. In 1922, an interactive plasticon, entitled “Movies of the Future,” opened at the Rivoli Theater in New York. The film provided the viewer with an optional ending. The happy ending was viewed using the green filter, while the tragic ending could be seen using the red filter. Many science fiction films of the 1950s were in anaglyphic 3D and have been shown on television (although today they are often shown in theaters using polarized 3D).
Anaglyphic images have been used in comic books, newspapers, and magazine ads. In 1953, 3D comic books were invented and distributed with red/green “space goggles.” Three- and four-color anaglyphic images are in use today in comic books and by some advertisers, but most often images are two-color.
What about colorblindness and
anaglyphs?
People who have colorblindness will not have major problems viewing red/green
or red/blue anaglyphs. One out of every 20 white males has some form of red/green
colorblindness, and about 1 in 1000 people of all sexes and races are completely
colorblind. In anaglyphs, the color is important only as a way of having one
or the other image pass the filter in front of the respective eyes. It is not
important that one then be able to distinguish the color of each image.
In fact, normally sighted people often suffer from “color bombardment” when viewing anaglyphs because their brain revolts at seeing the same object as being different colors with each eye. A redgreen colorblind person sees both colors as gray and therefore is not bothered by this effect. Redgreen colorblind people do sometimes have difficulties with red-green anaglyphs since although the colors appear similar, the intensities are rather different — the red image typically looks darker than the green.
How do the red/green glasses work?
When you look through the red lens, only red light is allowed through. The eye
that is covered with the red lens will see the green image. By the same token,
the green lens only allows green light through, so the eye that is covered with
the green lens will see the red image. In an anaglyph, when a given color
filter stops the other colors, it is called subtractive filtration. Because
the red and green images are slightly offset, each eye sees a slightly different
view of the picture. This disparity simulates the distance between our two eyes,
which provides two views of the same scene, therefore providing us with the
perception of depth, or binocular stereopsis.
How can Anaglyph Photos be made?
There are LOTS of ways to make anaglyph photos. In simplest terms: The basic
idea is to use the principle of complementary colors to encode your stereo information.
A stereo photograph requires a left eye view and a right eye view; to view a
photo in stereo the left eye must see ONLY the left eye view and the right eye
must see only the RIGHT eye view. Any combination of two complementary colors
can achieve this.
In practice... You can produce an anaglyph stereo photo in camera one of the following methods:
FILTER CHOICE: Pretty broad range here, too. Many have already been suggested. Kodak's "Filters for Scientific and Technical Use" is the ideal reference with its very useful spectrophotometric graphs. Some people like to use the pair of Wratten #29 with #44; or you might try #24 with #60; maybe a 26 with 38A, or #25 with #55, etc. What you use depends upon the lighting (daylight or tungsten) and what kind of film you are using. You'll find yourself experimenting A LOT; so you may as well buy quite a few of the filters as gelatin squares from Kodak, and be prepared to play around.
A good choice to start with is the #29 with a #44 to make anaglyph color slides. Basically, color slide film has red, green and blue sensitive layers (well that used to be the case, but now there are also lots of other layers added to improve color rendition) The red, green and blue layers are replaced with dyes that are cyan, magenta and yellow. Generally, if your filters achieve a good split between red on one side and green/ blue on the other, the positive slide will have one eye view in cyan dye and the other eye view in magenta/ yellow dye or red. If you juggle the amount of "crosstalk" between red and green, but stay away from blue, you can achieve a good yellow in the positive image, but this is really tricky.
Printing anaglyphs
Print ink colors are a problem, and the best way is to specify PMS colors and to treat the print-job as a two color run. Try PMS 151 as the red/orange color, and PMS 333 as the blue/green color. Printing with process inks (CYMK) is an even bigger problem, but sometimes the only choice in production printing of magazines etc.
How about software for the Computer??
Of course, Anaglyph images can also be created using one of the numerous freeware
and shareware programs available from the Stereoscopy.com
Downloads section.
|
Back to the Stereoscopy.com FAQ Page |